Companies Inventors Prototyping
Contact Us
Imagination comes naturally, but creation requires initiative, so take the first step and give us a call! We have the knowledge and experience to bring your ideas to life.   714.888.5621

-Engineering Product Design-


At SolidMasters, we are prepared to assist you during any phase of the development process. We are perfectly comfortable developing new ideas from scratch or modifying an existing product for a more efficient and cost effective design. We specialize in product incubation and design consulting. With over 21 years of experience, we have the knowledge to bring new ideas to life. 

At SolidMasters, we value innovation. That is why we strive to protect your ideas and save you the hassle of litigation. Every project begins with a non disclosure agreement as well as a patent inquiry in order to protect your idea and avoid product infringement. Thereafter, the project moves to the development phase.

Product development is an extremely involved process. Describing and rendering a thought as a physical model correctly takes a combination of precise skill and knowledge.  At SolidMasters, we strive to make this process easier for you. Our teams of engineers work hand-in-hand with your staff to develop products to meet your specifications. We are a boutique engineering firm which ensures you get the full attention of our entire team. Our CEO, Fred Vierheller, oversees every project and is standing by to assist you.

In cooperation with the inventor or firm, our engineers and designers will rearrange or substitute components to produce a more efficient design. In reality, a functional design will normally improve appearance, reduce manufacturing costs and make the product easier to maintain. The essence of good design is simplicity.  The objective is to build a product that is safe, reliable and cost effective.

Product development involves much more than shape and appearance. The development team must anticipate the problems that the production engineer will find as the product is manufactured. Beginning with the end in mind allows us to anticipating budgetary and timeline concerns that typically complicate the product development process, are you in need of product design firms in los angeles.

The Camtasia Studio video content presented here requires JavaScript to be enabled and the latest version of the Adobe Flash Player. If you are using a browser with JavaScript disabled please enable it now. Otherwise, please update your version of the free Adobe Flash Player by downloading here.

Our Drafting proficiency speaks for itself.If you would like to know more about our CAD services, please feel free to contact us.

3D CAD Design Over 2D Design Will Save You Money

Teams of engineers at SolidMasters are highly skilled in both 2D and 3D CAD modeling and drafting. Only latest and best-in-class CAD and other software packages are used for all your small and large designing needs.

CAD Drafting and Prototype ServicesWithout a doubt 3D modeling is now standardized and world recognized from of CAD Computer Aided Drafting. 3D modeling gives engineers superb control over the total design right from component level to final assembly.

At SolidMasters engineers are skilled qualified and trained for all types of 3D CAD modeling and drafting needs. Our engineering team has over years of experience in serving clients with highest quality great efficiency and quick speed.




Mechanical Design A Crucial Stage Of Your Manufacturing Process

At SolidMasters we understand the importance of mechanical design for any manufacturing process. Our engineers strive to offer highly qualitative services that will never let you down. As you know every new product development starts with mechanical development. Mechanical development and designing isn't as easy as it might seem to you initially. The whole process involves a series of steps like generating the concept suggesting improvements in existing model and so on. Computers are highly used now-a-days to simplify this complex process of mechanical designing.

CAD Drafting and Prototype ServicesWe have a team of mechanical engineering experts who can handle even the most complex projects with high efficiency and deliver timely results without any error.

Avoid Fees And Commissions In New Ideas Development

CAD Drafting and Prototype ServicesAnother tip for succeeding with your idea is to make it presentable and then market it. There are several firms out there that will charge you some fee for marketing your idea but try to avoid them. Such firms are not reliable and can be expensive. Bring out your creative side and try to market the idea yourself. Once you have decided to market the idea yourself it is time to make it presentable. For instance if you have an idea about an amazing food recipe just do not go out and pitch the idea by telling that you have a food recipe. Make the food yourself take its pictures list down ingredients and also determine what age groups will love it the most. Think of its name and try to add some characteristics to make it presentable. It is all about pitching your idea. You basically have to hypnotize the investor in loving your product and it can only be done if your idea is presentable and worthy of considering.

Drawing skills for Industrial Design artists

Make design changes quickly

A reality of product design is that there will always be changes � known as engineering change orders (ECOs). Regardless of how sound an initial concept design is once various members of the design team -engineers non-technical sales marketing and supply chain partners � weigh in on proposed designs changes will result. Designs evolve and improve as a result of such collaborative efforts; the design process therefore must also be flexible and fluid.

Because one change to a part often impacts multiple views of the drawing engineers designing in 2D must manually update all associated assembly models drawings views details and bills of material (BOMs) which is an inherently error-prone and time-consuming process. Making a change in 2D also often requires an additional round of drawing checking another time consuming and tedious process.

When engineers design in 3D however making a change is much simpler and faster. Thanks to bidirectional associatively all elements of a model are associated or connected. As a result when a change is made to a 3D model it is automatically reflected in all related drawings and associated views allowing the user to make changes quickly and proceed with the new design.

Parametric design functionality a feature of many solid modelers facilitates a user's ability to make changes quickly. By storing the relationships between the various elements of the design and treating them like mathematical equations it allows any element of the model to be changed and then instantly regenerates the model in much the same way that a spreadsheet automatically recalculates any numerical changes.

In parametric-based solid modelers all features and dimensions of a model are stored as design parameters allowing designers to make fast design changes by simply changing the value of the parameter. When a value is changed the model is automatically updated and all other model features and dimensions affected by that change update automatically. Bi-directional associativity and parametric design functionality speed design changes and greatly reduce the chance of errors.

Produced by machine design Sponsored by Adobe and SolidWorks.


3-D Printer "Bio-Ink" to Create Human Organs

Mar. 8 2013 Experts agree that rising Chinese labor costs and improving U.S. technology will gradually cause significant manufacturing activity to return to the United States.

When it does a new interdisciplinary manufacturing venture called the Advanced Manufacturing Technology (AMTecH) group at the University of Iowa College of Engineering's Center for Computer Aided Design (CCAD) may well help lead the charge.

AMTecH was formed to design create and test -- both virtually and physically -- a wide variety of electromechanical and biomedical components systems and processes. Currently the group is working on projects ranging from printed circuit boards for automobiles and aircraft to replacement parts for damaged and failing human organs and tissue says Tim Marler AMTecH co-director.

"Electromechanical systems are one of two current branches of the AMTecHgroup " he says. "We want to simulate analyze and test printed circuit boards and assemblies because they are used in a wide range of products from missiles to power plants to cell phones. "The second branch of the group involves biomanufacturing and is led by my colleague and AMTecH co-director Ibrahim Ozbolat assistant professor of mechanical and industrial engineering " says Marler. "The long-term goal of this branch is to create functioning human organs some five or 10 years from now. This is not far-fetched."

Using its facilities for engineering living tissue systems the Biomanufacturing Laboratory at CCAD is working to develop and refine various 3D printing processes required for organ and tissue fabrication Ozbolat says.

"One of the most promising research activities is bioprinting a glucose-sensitive pancreatic organ that can be grown in a lab and transplanted anywhere inside the body to regulate the glucose level of blood " says Ozbolat. He adds that the 3D printing as well as virtual electronic manufacturing being conducted at AMTecH are done nowhere else in Iowa.

In fact the multi-arm bio printer being used in the lab is unique. Ozbolat and Howard Chen a UI doctoral student in industrial engineering designed it and Chen built it. It turns out that managing multiple arms without having them collide with one another is difficult enough that other printers used in other parts of the world avoid the problem by using simpler designs calling for single-arm printing. As Chen continues to refine his and Ozbolat's design the UI printer currently gives the UI researchers a distinct advantage.

While bioprinters at other institutions use one arm with multiple heads to print multiple materials one after the other the UI device with multiple arms can print several materials concurrently. This capability offers a time-saving advantage when attempting to print a human organ because one arm can be used to create blood vessels while the other arm is creating tissue-specific cells in between the blood vessels.

The biomanufacturing group which consists of researchers from various disciplines including industrial mechanical electrical polymer and biomedical engineers as well as medical researchers is working on this and other projects and collaborates with Dr. Nicholas Zavazava professor of internal medicine in the UI Roy J. and Lucille A. Carver College of Medicine. The group also works with researchers from the college's Ignacio V. Ponsetti Biochemistry and Cell Biology Laboratory.

In addition to receiving support from the National Institutes of Health for the artificial pancreas research AMTecH is looking forward to continued support from the Electric Power Research Institute (EPRI) as well as seed funding from the UI for fostering commercialization of a new software product.

"When you look at the U.S. manufacturing environment and relevant technology this is a perfect time to launch AMTecH " says Marler who also serves as associate research scientist at CCAD and senior research scientist at CCAD's Virtual Soldier Research program.

AMTecH co-directors Marler and Ozbolat are advised by Herm Reininga interim director of the National Advanced Driving Simulator and member of the leadership council of the national Next Generation Manufacturing Technology Initiative. The AMTecH group also includes one research staff member one postdoctoral student seven graduate students and four undergraduate students.

Located within CCAD AMTecH conducts cutting-edge research and development aimed at advancing and exploring next generation manufacturing technologies.

Click here to see article source:

We share relevant clips on product design or development in a weekly basis.

MECHANICAL DESIGN COOKING BOOK A Video On The Finite Element Method. A very good recipe:

A Video On The Finite Element Method.

The finite element method is one of the most powerful numerical methods available for solving partial differential equations; which apply over complex shapes. Very often in engineering science it is difficult to solve a partial differential equation which applies over a complicated shape. The process therefore is to sub-divide the complex shape into lots of simpler shapes on which the complex differential equation can be solved. The process then is to solve the complex differential over each simpler shape and 'join' all the simpler shapes together ensuring compatibility and equilibrium at the inter-element boundaries. This often results in thousands of simultaneous equations which can be solved on a digital computer. Writing of the computer program is 'relatively simple' compared with solving such a difficult mathematical problem by traditional methods. The method can be used for structural analysis dynamics vibrations fluid flow thermodynamics acoustics electrostatics magneto statics seepage through porous media electrical and fluid networks electronics etc. etc. Large commercial computer packages are available such as PAFEC ANSYS NASTRAN ABACUS LUSAS etc. etc; which make solution relatively simple for most problems in engineering. For more information consult:

1) Ross C.T.F (1996) "Finite Element Techniques in Structural Mechanics" Woodhead Publishers Cambridge UK.

2) Ross C.T.F (1998) "Advanced Applied Finite Element Methods" Woodhead Publishers Cambridge UK.

3) Ross C.T.F. (1996) "Finite Element Programs in Structural Engineering & Continuum Mechanics" Woodhead Publishers Cambridge UK.

Here's A Quick Way To Understand Why To Protect Your Idea.

The first step of success is the idea and this is where the dream begins. Turning ideas into reality is not that difficult and all that is required is a bit of dedication and hard work. When an idea pops up in the mind there are two things an innovator can do. First is to forget it and let it go. This option will only prolong the journey to success and nothing good will come out of it. The second option is to react. Reacting is a bold step and requires appropriate decision making skills. It is quite obvious that if the idea is believable practical and reasonable the second option must always be chosen.

CAD Drafting and Prototype ServicesOnce you have chosen to move forward with the idea start looking out for people who will be willing to fund your idea and take it to new heights. Reach out to companies where your idea might seem relevant or approach friends and family who trust you enough and are ready to help you out. Once you have found out the ideal resources it is time to disclose the idea.

Refrain from giving out your precious ideas without an agreement. Get a confidential agreement made out and get it signed from the person with whom you are discussing it. This will ensure two things. First is that it will restrict the second party from copying your original concept. There have been instances in the past where companies have listened to the ideas and reject them initially despite liking them a lot. Think in this way. You go to a company pitch your idea get it rejected and find out the next day that the product you thought about came in the market. The company has clearly cheated you and this can only happen if you do not have an agreement which clearly mentions that the idea is your intellectual property the company cannot use it without your consent and cannot spread it or share it with someone else.

Patent is another way you can protect your idea or innovation. Patent is just a legal right which gives you ownership of the idea or product for a certain period of time. You will have to pay a fee for this patent but when someone wants to use your idea they will directly pay you and in this way you can cover up the cost of the patent you initially incurred.